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Abstract

The unique thermal properties of carbon nanotubes (CNT) may offer possibilities for the development of fundamen-

tally new composite materials. Numerical simulation for such CNT-based composites usually demands extremely large

and expensive computer resources. In preliminary computations, temperature distribution in the CNT has been turned

out to be almost uniform, due to its exceptionally high heat conductivity in comparison with the host polymer. This

feature allows us to considerably simplify the mathematical model of the heat conduction in CNT composites. In

the proposed approach, the host polymer is the only domain which is modeled, while the CNTs are treated as heat

superconductors with constant and unknown temperatures constrained at their surfaces. As a result, the computational

scale is reduced substantially. The hybrid boundary node method is applied in this study. Numerical examples clearly

demonstrate the efficiency and sufficient accuracy of the proposed approach.

� 2004 Published by Elsevier B.V.
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1. Introduction

Carbon nanotubes (CNT) have been attracting considerable attentions from both scientists and

engineers for their remarkable mechanical and electronic properties over the last decade. Intensive re-

searches have been carried out on these quasi-one-dimensional structures for their production, physical

properties and possible applications [1,2]. Composed of the same atoms, CNTs are related to both graph-

ite and diamond which are known for their high thermal conductivities. Thus, CNTs and CNT-based
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composites potentially possess excellent heat conducting properties, and may be attractive for heat trans-

port management in miniature device components.

A few experiments have been conducted to measure the thermal conductivities of mats of compressed

ropes of CNTs [3,4], in which values of thermal conductivity ranging from 1750 to 5850W/mK were

reported. The direct measurements of the heat conductivity of individual CNT were also tried recently,
and a value of 3000W/mK was observed at room temperature [5]. Several preliminary numerical experi-

ments based on molecular dynamics (MD) simulations [6–8] has also been performed and even higher

values, 6600W/mK at 300K, of the thermal conductivities have been obtained. Although the estimated

values were different in each simulation, it is generally accepted that the CNTs possess excellent heat

conductivity, comparable or even better than diamond. Very recently, the single wall carbon nanotubes

(SWNTs) were used to enhance the thermal properties of industrial epoxy. In the work of Biercuk et al.

[9], samples loaded with 1wt% SWNTs were observed to show a 70% increase in heat conductivity at

40K, and 125% at room temperature.
Numerical simulations may help us understand designs of such nanocomposites, however, in comparison

with those for pure CNTs, little simulation work has been done so far for the thermal properties of the

CNT-based composites. This is because MD simulations are limited to very small length and time scales

and cannot deal with the larger models, due to the limitations in current computing power.

The concept of representative volume element (RVE) has been widely used for conventional fiber-rein-

forced composites at the microscale analyses [10]. Recently, Liu et al. [11,12] applied it for the study of the

CNT-based composites for evaluating their mechanical properties. In their study, a single nanotube with a

surrounding matrix material was modeled as an RVE, with properly applied boundary and interface
conditions to account for the effects of the surrounding materials. Then, elastic behavior of the RVE

was evaluated using the finite element method. In the same way, Fisher et al. [13] analyzed the effects of

the CNT waviness on the equivalent Young�s modulus of the composites using an RVE containing a curved

CNT by the finite element method.

The aim of this study is to investigate the thermal properties of RVEs of CNT-based composites through

numerical simulations based on 3-D potential theory. For the analysis of an RVE in which not only single

but also many CNTs are randomly distributed, there are two major difficulties in the standard numerical

methods like FEM or BEM. One is that both may face severe difficulties in discretization of the domain
geometry in question. This is more serious especially in FEM models where meshing of the solid geometries

within CNT-reinforced polymers may be extremely complicated. The other is that the computational scale

becomes extremely large and exceeds the current computing power. Because of the very thin and slender

structure of the CNTs, a large number of nodes or elements are required to discretize them so that the steep

gradients of the physical quantities close to the interface between the CNT and the matrix are captured

accurately in the simulations. Moreover, at each node on the interface between the CNT and the matrix,

both the temperature and the normal heat flux are unknown, so that the total degrees of freedom in the

overall system of equations considerably increase.
To alleviate the first difficulty, the hybrid boundary node method (Hybrid BNM) can be used [14–18]. By

combining a modified functional with the moving least squares (MLS) approximation, the Hybrid BNM

becomes a truly meshless boundary-only method. The Hybrid BNM requires only discrete nodes located

on the surface of the domain and its parametric representation. As the parametric representation of created

geometry is used in all CAD software packages it should be possible to exploit their Open Architecture

features and handle truly arbitrary geometry.

In preliminary computations [19], a distinct feature of temperature distribution was revealed. The

temperatures within the entire CNT were turned out to be almost uniform. The main reason for this
phenomenon is that almost the entire heat flux flows through the CNT, due to its high heat conductivity,

higher than that of the matrix by several orders of magnitude. In light of this observation, a simplified

approach is proposed in this paper. In the proposed approach, the CNTs are treated as heat superconduc-
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tors and uniform temperature distribution within the entire body of each CNT is assumed. As a result, the

total degrees of freedom are reduced substantially.

In this paper, the Hybrid BNM is first incorporated into a multi-domain solver in Section 2. Then, for-

mulations for the simplified approach are derived in Section 3. Numerical examples verifying the validity

and demonstrating the efficiency of the simplified approach are presented in Section 4. The paper ends with
conclusions in Section 5.
2. Hybrid BNM formulations for the multi-domain solver

Suppose that n CNTs are distributed in a polymer matrix which makes an RVE. It is assumed that both

the CNTs and the matrix are continua of linear, isotropic and homogenous materials with given heat con-

ductivities. A steady state heat conduction problem governed by Laplace�s equation with proper boundary
conditions is considered for each CNT and the matrix domains.

The hybrid boundary node method is based on a modified variational principle, in which there are three

independent variables, namely:

• temperature within the domain, /;
• boundary temperature, ~/;
• boundary normal heat flux, eq.

Suppose further that N nodes are randomly distributed on the bounding surface of a single domain. The

temperature within the domain is approximated using the fundamental solutions as follows:
/ ¼
XN
I¼1

/s
I xI ; ð1Þ
and hence at a boundary point, the normal heat flux is given by
q ¼ �j
XN
I¼1

o/s
I

on
xI ; ð2Þ
where /s
I is the fundamental solution with the source at a node sI, j is the heat conductivity and xI are the

unknown parameters. For 3-D steady state heat conduction problems, the fundamental solution can be

written as
/s
I ¼

1

j
1

4prðQ; sIÞ
; ð3Þ
where Q is a field point; r(Q, sI) is the distance between the point Q and the node sI.

The boundary temperature and the normal heat flux are interpolated by moving least square (MLS)

approximation
~/ðsÞ ¼
XN
I¼1

UIðsÞ/̂I ; ð4Þ
and
eqðsÞ ¼ XN
I¼1

UIðsÞq̂I : ð5Þ
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In the foregoing equations, UI(s) is the shape function of MLS approximation; /̂I and q̂I are the nodal

values of temperature and normal flux, respectively.

For the polymer domain, the following set of Hybrid BNM equations can be written
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where superscripts p, subscripts 0 and k,k = 1, . . .,n stand for polymer, quantities exclusively associated

with a domain, and quantities associated with the interface between the k-th nanotube and the matrix,

respectively. The sub-matrices [U], [V] and [H] are given as
UIJ ¼
Z
CJ
s

/s
ImJ ðQÞdC; ð8Þ

V IJ ¼
Z
CJ
s

qsImJ ðQÞdC; ð9Þ

HIJ ¼
Z
CJ
s

UIðsÞmJ ðQÞdC; ð10Þ
where CJ
s is a regularly shaped local region around a given node sJ, mJ is a weight function and s is a field

point on the boundary. (For full details of Hybrid BNM refer to [18]).

Similarly, for the k-th nanotube domain we have
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where the superscript tk stands for the k-th nanotube and the subscript i indicates the quantities associated
with the interface between the k-th nanotube and the matrix.

At the interface between a nanotube and the polymer both the temperature and heat fluxes must be con-

tinuous, i.e.,
f/p
kg ¼ f/tk

i g; ð13Þ

and
fqpkg ¼ �fqtki g: ð14Þ
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Using the continuity conditions, Eqs. (6), (7), (11) and (12) can be assembled into the following expression:
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where [Ap
00], [A

p
01] and fdp

0g are formed by merging ½Up
00� and ½V p

00�, ½U
p
01� and ½V p

01�, and f/̂p

0g and fq̂p0g respec-
tively, according to the known boundary conditions. For degrees of freedom with prescribed temperature,

the related elements in f/̂p

0g are selected for fdp
0g, and the corresponding rows of ½Up

00� and ½Up
01� are selected

for ½Ap
00� and ½Ap

01�; otherwise, elements in fq̂p0g are selected for fdp
0g and the corresponding rows in ½V p

00� and
½V p

01� are selected for ½Ap
00� and ½Ap

01�. In the same way, ½Atk
00�, ½A

tk
0i� and fdtk

0 g, are formed by merging ½Utk
00� and

½V tk
00�, ½U

tk
0i� and ½V tk

0i�, and f/̂
tk
0 g and fq̂tk0 g, respectively.

The set of Eq. (15) is solved for the unknown parameters x by the standard Gauss elimination solver,

and then, by back-substitution into Eqs. (6), (7), (11) and (12), the boundary unknowns are obtained either
on the interfaces or the external boundary surfaces. As demonstrated, the multi-domain Hybrid BNM is a

boundary-only meshless approach. No boundary elements are used for either interpolation or integration

purposes. Therefore, it may alleviate the discretization difficulty to a large extent for complicated

geometries.
3. Formulations for the simplified approach

As mentioned in the introduction, the unusually high heat conductivity of the CNTs in comparison with

the polymer makes the temperature distribution within an individual CNT almost uniform. This feature

may allow us to simplify the modeling of the CNT-based composites. In this section the formulations

for the simplified approach are developed, where only single domain, namely the polymer matrix is mode-

led. Each CNT is treated as a heat superconductor with only one constant temperature constrained at its

surface.

Using the hybrid boundary node method, the same Eqs. (6) and (7) in Section 2 for the polymer domain

can be obtained. By combining Eqs. (6) and (7), we have the following equation:
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where the superscript p is omitted for clarity as there is only single domain considered here, and [A0k],
k = 0,1, . . .,n and {d0} are formed by merging [U0k] and [V0k] and f/̂0g and fq̂0g, respectively, in the same

way as explained in Section 2.
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Suppose that mk nodes are located at the interface of the k-th nanotube with the polymer, and a constant

temperature /k
c is prescribed, namely
f/̂kg ¼ f1gk/
k
c ; ð17Þ
where {/k} is the nodal values of temperature at the interface; {1}k is a column vector of mk dimensions

with all the elements equals 1. By substituting Eq. (17) into Eq. (16) for all the interfaces, the following

equation is obtained,
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In the above set of equations, there are n (the number of CNTs) more unknowns than the number of equa-

tions, because we have introduced one more unknown, i.e. the constant temperature, for each CNT. In
order to solve Eq. (18), we need to add n additional equations. These equations can be obtained by using

energy conservation law. Actually, for a steady state heat conduction, the rate of thermal energy flowing

into a CNT must equal to the rate of energy flowing out. Therefore, the following heat flux relationship

exists at the surface of the k-th CNT,
Z
Ck

qdC ¼ 0; ð19Þ
where Ck represents the outer surface of the k-th CNT. Substituting Eq. (2) into (19) and omitting the

common factor j, we have
XN
I¼1

Z
Ck

o/s
I

on
dCxI ¼ 0: ð20Þ
In Eq. (20) Ck is a closed surface and /s
I is the fundamental solution with the source point located at the

node sI, hence the following integral identity [20] holds,
Z
Ck

o/s
I

on
dC ¼

1 8sI 2 Ck;

0 8sI 2 Ck:

�
ð21Þ
Therefore, the coefficients in equation (20) are either 1 or 0. For nodes located on the surface of the k-th

CNT, they are 1, otherwise they are 0. Appending Eq. (20) to Eq. (18) for all CNTs, we obtain the final set

of algebraic equations which can uniquely determine the unknown parameter x.
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Comparing Eq. (22) with Eq. (15), it can be seen that the total number of degrees of freedom in the sim-

plified modeling is reduced considerably. For each CNT, only one algebraic equation is added. Further-
more, the coefficients of these algebraic equations are either 1 or 0. Calculations of them are avoided.

Therefore, both the CPU time and memory usage can be saved significantly.
4. Numerical results

4.1. An RVE containing single CNT

An RVE model with single CNT embedded is first investigated. The geometry and boundary conditions

are presented in Fig. 1(a)–(c). Fig. 1(c) shows the computational model discretized with boundary nodes.

The dimensions of the RVE are: for the matrix, length L = 100nm, H = 20nm; for the CNT, length

Lc = 50, outer radius R = 5nm, thickness D = 0.4 nm (which is close to the theoretical value of 0.34nm

for SWCNT thickness). The heat conductivities used for the CNT and matrix (Polycarbonate) are:
. Nanoscale representative volume element with single nanotube embedded. (a) The unit model and coordinates system.

ensions of the unit model. (c) Discretization with boundary nodes.
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CNT: jt ¼ 1750 W=mK;

Matrix: jm ¼ 0:37 W=mK:
These values of the dimensions and material constants are within the wide ranges of those for CNTs

reported in literature [1–9].

Homogeneous boundary conditions are considered here, namely uniform temperatures of 10 and 0K

imposed at the two end faces of the RVE, respectively, and heat flux free at the other four side faces
(see Fig. 1(c)). This boundary condition set allows us to estimate equivalent heat conductivity of CNT-

based composite in the axial direction. Assuming homogeneous material properties and using Fourier�s
law, the formula for equivalent heat conductivity can be written as
j ¼ � qL
D/

; ð23Þ
where j represents the heat conductivity; q is the heat flux density, L the length of the RVE in the axial

direction and D/ the temperature difference between the two end faces.

The problem was solved using both the multi-domain solver described in Section 2 and the simplified

approach outlined in Section 3. When solved by the multi-domain solver, the whole CNT was modeled

as one domain and the polymer as the other. The inner face of the CNT was prescribed as flux free, while
the outer face was handled as the interface between the two domains. Continuity conditions, i.e. Eqs. (13)

and (14) were applied at the interface. When solved by the simplified approach, only single domain, namely

the polymer, was modeled, while, instead of modeling the CNT as a domain, an unknown uniform temper-

ature was constrained at the interface.

Numerical results for the temperature along two horizontal lines (one line is from (0, �49, �5.1) to (0,

49, �5.1), the other from (0, �49, �9) to (0, 49, �9) are presented in Fig. 2. In this figure and thereafter, MS

and SA stand for multi-domain solver and simplified approach, respectively. It is seen that results obtained

by the two methods agree excellently with each other. Fig. 3 shows numerical results for the heat flux in the
axial direction along three vertical lines (the first line is from (0, 30.1, �9.5) to (0, 30.1, 9.5), the second line

from (0, 35, �9.5) to (0, 35, 9.5), and the third from (0, 49.5, �9.5) to (0, 49.5, 9.5)). Again, they are in good
Fig. 2. Temperature distribution along the axial lines. MS: multi-domain solver, SA: simplified approach.



Fig. 3. Heat flux distribution along the vertical lines. MS: multi-domain solver, SA: simplified approach.
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agreement. In Fig. 2, an obvious feature of the temperature distribution is observed that the temperature in
the matrix first decreases from the prescribed temperature value at the square end face, then remains almost

constant at the segments near the CNT, and finally continues to decrease to the lowest temperature at the

other square end face. This observation is consistent with the physical interpretation. Due to that the heat

conductivity of the CNT is several orders of magnitude higher than that of the host polymer, almost the

entire flux flows through the CNT. Therefore, nearly no flux flows in the matrix in the segments near

the CNT, and the temperature at these locations is almost uniform. The corresponding heat flux concen-

trations can be easily seen near the tips of the CNT in Fig. 3.

Preliminary computations [19] have also shown that the equivalent heat conductivity of the RVE is
mainly determined by the lengths of the RVE and the CNT, and relatively less affected by the height of

the RVE (H in Fig. 1(b)). This is because the heat conduction problem considered here is in one dimension

only, namely, in the axial direction of the CNT. The accuracy of the simplified modeling does not depend

on the actual geometrical dimensions of RVE. It is affected only by the ratio of the heat conductivities of

the host polymer and CNT.

To compare the efficiency of the two methods, the total number of degrees of freedom in the overall

system of equation, and the times spent for computing the matrices and for solving the overall equation

are listed in Table 1. Numerical results of equivalent heat conductivity from both the methods are also
compared in Table 1. The difference between the results of equivalent heat conductivity is only 0.67%, while

both the memory usage and CPU time are reduced substantially in the simplified approach.
Table 1

CPU timing results for both methods

Total degrees

of freedom

CPU seconds

for integration

CPU seconds

for solving equation

Equivalent heat conductivity

Multi-domain solver 4402 294 477 0.7719

Simplified approach 2193 144 62 0.7771
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4.2. An RVE containing two CNTs

In order to further justify the simplified approach, an RVE containing two CNTs is considered in this

section. Dimensions and the boundary conditions for the outer faces of the RVE are remained the same as

the single CNT model. Two CNTs of conformable size are coaxially aligned within the RVE depicted in
Fig. 4. Sizes of the CNT of Section 4.1 are kept for each CNT, except for lengths, which are given in

Fig. 4. The value of heat conductivity for the polymer used in this model is the same as the previous single

CNT model. In order to achieve better agreements between the two methods, a higher value, namely

6000W/mK is selected for the CNTs, which is still within the range of those for CNTs reported in Ref.

[6]. Like the single CNT model, this model was also solved by both the multi-domain solver and the sim-

plified approach, respectively. Since the CNTs are treated as heat superconductors in the simplified model-

ing, thus we can expect better agreements of results between the simplified approach and the multi-domain

solver if a higher value of heat conductivity is used for the CNTs in the multi-domain modeling. Results of
temperatures along two horizontal lines (one is from (0, �49, �5.1) to (0, 49, �5.1), the other from (0, �49,

�9) to (0, 49, �9)) are shown in Fig. 5. Fig. 6 presents the heat fluxes in the axial direction along four ver-

tical lines (the first line is from (0, 0, �9.5) to (0, 0, 9.5), the second line from (0, 4.9, �9.5) to (0, 4.9, 9.5),

the third from (0, 40.1, �9.5) to (0, 40.1, 9.5), and the fourth from (0, 45, �9.5) to (0, 45, 9.5)). Again, it

is seen that numerical results for both the temperature and flux obtained by the simplified approach are

excellent approximations of that by the multi-domain solver. Comparing Fig. 6 with Fig. 3, it is seen that

better agreement of flux concentration at the locations close to the tip points of the CNTs is achieved than

the single CNT model. This is what we have expected.
Fig. 4. Nanoscale representative volume element with two CNTs embedded.

Fig. 5. Temperature distribution along the axial lines. MS: multi-domain solver, SA: simplified approach.



Fig. 6. Heat flux distribution along the vertical lines. MS: multi-domain solver, SA: simplified approach.
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4.3. Maximum temperature difference within a CNT

One of the key factors that result in the uniform temperature within a CNT is the significant difference of

heat conductivity between the CNTs and the polymer. In order to study the influence of the difference of

heat conductivity on the temperature distribution within the RVE, the maximum temperature difference
within the CNT has been calculated as a function of the ratio of the heat conductivity between the CNT

and the polymer matrix Cr = jCNT/jmatrix. The dimensions and parameters of Section 4.1 are the kept,

except for Cr, which varies from 1 to 10000. For each value of Cr, the conductivity of the polymer is held

constant at 0.37W/mK. In the computations, the multi-domain solver is employed. The maximum temper-

ature difference, D/max, within the CNT is represented by that between the two end tip points (0, 30, 0) and

(0, �30, 0). Results are presented in Fig. 7. As expected, D/max decreases with Cr increasing. When Cr

grows up to 2000, D/max is only 2.5% that in the case of homogeneity (Cr = 1.0). Since the lowest value
Fig. 7. Equivalent heat conductivity of the RVE for various ratios Cr.
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of ratio of heat conductivity between the CNTs and a polymer, ever reported in literature, is much higher

than 2000, the CNTs can be treated as a heat superconductor without loss in accuracy. The effective heat

conductivities estimated by Eq. (23) for various Cr are also presented in Fig. 7. It can be seen that the equiv-

alent heat conductivity converges to a specific value when the ratio grows larger. When the ratio is bigger

than 2000, the exact value of heat conductivity of the CNT has little effect on the equivalent heat conduc-
tivity of the RVE.
5. Conclusions

In a CNT-based composite, the CNT phase possesses exceptionally high heat conductivity, while the

heat conductivity of the host polymer phase is relatively very low. The significant difference of heat conduc-

tivity makes the simulation of thermal behavior of the composites rather challenging. On the other hand, it
also provides the opportunities to simplify the modeling. In this paper, a simplified approach is proposed, in

which each CNT is treated as a heat superconductor and a constant temperature within the entire body of

the CNT is assumed. Formulations for both full modeling (the multi-domain solver) and the simplified

approach are presented.

The simplified approach was validated by studying the examples of an RVE with single and two CNT(s)

embedded, solved using the multi-domain solver and the simplified approach, respectively. Numerical

results obtained from both the approaches are presented and an excellent consistency demonstrated. The

influence of heat conductivity ratio of CNT to the polymer matrix on the accuracy of the simplified
approach was also investigated. All calculations clearly demonstrate that the heat conducting behavior

of CNT-based composites can be simulated by the simplified approach without loss in accuracy.

The simplified approach provides remarkable improvements to overall computational efficiency and

allows for the solution of complicated problems using less computer memory, thus increases the number

of CNTs contained in an RVE that can be analyzed within the available computer resources. Combining

the Hybrid BNM with the fast multi-pole techniques [21,22] to further reduce the memory requirements

and computational time is underway.
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